

Welcome to the WHDP documentation!

As always, RTFM!

If you want to work with data stored in the WaterHubDataPool (WHDP), these instruction are essential.
If you want to add data to the WHDP, read the Instructions for data provider.
If you want to load data from the WHDP, read the Instructions for data users.

Content:

	Instructions for data users
	Connect to the WHDP

	Example SQL queries

	Instructions for data provider
	System architecture

	General workflow

	Add site

	Add or modify variables

	Add or modify persons (offline laboratory data)

	Conversion of raw data (offline laboratory data)

	Add a new source_type (online sensor data)

	Add a source (online sensor data, instance of source_type)

	Add raw data to existing source (online sensor data)

	Conversion of raw data (online sensor data)

	Instructions for Admin
	Installation on Ubuntu 18.04. LTS

	Database layout
	Design principles

	signal

	lab_results

	site

	picture

	source

	source_type

	special_value_definition

	variables

	comment

	signal_quality

	quality

	persons

	project

	Command references

	How to contribute to documentation
	Initialization

	Typical workflow

	Obsolete documentation
	Run server in test mode

	Workflow example

The WHDP source code can be found here [https://sissource.ethz.ch/sispub/whdp/tree/master].

Indices and tables

	Index

	Module Index

	Search Page

Instructions for data users

A typical data user is an Eawag research staff member or student.

All data is store in a PostgrSQL database so that arbitrary queries
can be performed. The figure below shows the
database layout.

[image: _images/DataModel_WHDP.svg]
Connect to the WHDP

First-time use
~

	Contact the WaterHub project coordinator to request access

	Obtain the password via the WaterHub project coordinator

	
	Take note of the following information

	Host: eng-whdp1.eawag.wroot.emp-eaw.ch
Port: 22
Name of the database: whdp
Default user name: whdp_user

	Continue with steps as outlined below

Connect with terminal

You can connect directly to the database via psql [http://postgresguide.com/utilities/psql.html].
However, it is more convenient to load the data required directly in
the environment used for further analysis:

Connect within R

With the RPostgreSQL package [https://cran.r-project.org/web/packages/RPostgreSQL/] data can be
loaded directly into R.

However, for Eawag internal usage the
DatapoolR package [https://eaw-test-gitlab.eawag.wroot.emp-eaw.ch/scheidan/DatapoolR]
should be preferred. It connects automatically to the database and
provides convenient helper functions.

Connect within Python

Different options exist, psycopg2 [https://wiki.postgresql.org/wiki/Using_psycopg2_with_PostgreSQL] is widely used.

Example SQL queries

The SQL language may look cumbersome at first. However, it gives a lot of flexibility and allows to express even very complex queries. This SQL tutorial [https://www.w3schools.com/sql/default.asp] is a helpful reference.

Also note that the DatapoolR package [https://eaw-test-gitlab.eawag.wroot.emp-eaw.ch/scheidan/DatapoolR] provides functions to simplify common queries.

List all data sources:

SELECT srctype.name, src.name, src.serial, srctype.description, src.description
FROM source_type AS srctype, source AS src
WHERE src.source_type_id = srctype.source_type_id;

List all sites and check how many images a site has:

SELECT name, coord_x, coord_y, coord_z, street,
 postcode, COUNT(picture.filename), site.description
FROM site
 LEFT JOIN picture ON site.site_id=picture.site_id
GROUP BY site.site_id;

Get all signals measured at site site_A within a given time interval:

SELECT signal.timestamp, value, unit, parameter.name, source_type.name, source.name
FROM signal
 INNER JOIN site ON signal.site_id = site.site_id
 INNER JOIN parameter ON signal.parameter_id = parameter.parameter_id
 INNER JOIN source ON signal.source_id = source.source_id
 INNER JOIN source_type ON source.source_type_id = source_type.source_type_id
WHERE site.name = site_A AND
 ?tmin::timestamp <= "2017-01-01 00:12:00"::timestamp AND
 signal.timestamp <= "2017-01-01 00:18:00"::timestamp;

Instructions for data provider

Data provider is usually the scientist performing measurements in the field.

System architecture

Data flow model specification.

[image: ../_images/DataFlowModel.svg]The data provider must make sure that:

	For online sensor data:

	The raw data arrive in the landing-zone at the right place,

	A conversion script is provided to interpret the raw data, and

	Meta-data are provided.

	For offline laboratory data:

	The raw data is copied to the whdp server

	A conversion script is available and running to process the data into the lab_results.csv file

	Meta-data are provided.

General workflow

Working on the real landing-zone would be dangerous. Therefore, all
development and testing is done on a copy of the
landing-zone. The WHDP provides a command to create development
landing-zones. A development landing-zone can have any names, but let’s call it
dlz for now:

$ whdp start-develop dlz

This creates a folder (a copy of the real landing-zone) called dlz in the home directory. You can
see how the created landing zone looks like with ls -l dlz.

The WHDP provides various checks to ensure that the provided
conversion scripts and meta-data are consistent. The checks are ran by:

$ whdp check dlz

If everything is fine, modify the develop landing-zone (e.g. add a new
sensor) according to the instructions given below. After the
modifications run the checks again.

$ whdp check dlz

It is recommended to execute this checks after any small changes. If this succeeds, update the operational landing zone:

$ whdp update-operational dlz

All future raw data should be delivered directly into the operational database.

In the following sections, the different types of modifications/additions are
explained.

Add site

In order to add a new measuring site, the information about this site have to be provided as a site.yaml file in a new folder for the site, within the sites folder of the landingzone. The information to be specified are:

	Name: Name of the site

	Description: Free text describing the site

	Unit: A unique name for the room/space (e.g., BU_B09, FC_C24, NE_A017)

	Area: The section of the room/space floor plan (e.g., GW).

	Setup: The experimental setup (e.g., GW).

	Component: A part of the experimental setup (e.g., MBR-Tank1).

	Status: The current state of operation of the site (e.g., operational).

	Pictures (optional): Pictures relating to the site can be specified. Pictures are normally stored in the images folder of the specific site.

The structure of the file has to be the same as in the example below:

name: NE_WaterHub_GW_GW_MBR-Tank1
description: MBR Tank 1 - Buffer tank
unit: NE_A17
area: GW
setup: GW
component: MBR-Tank1
status: operational

pictures are optional:
pictures:
 -
 path: images/installation.png
 description: Installation of Lora Ultrasonic Sensor 00769
 # date is optional:
 date: 2016/08/22 12:00:00
 -
 path: images/impact.jpg
 description: Impact Zone of Sensor 00769

Adding a site if fairly trivial by starting an interactive input program. Typing a dot (.) at any time will abort the entry:

$ whdp add dlz site

Semi-automatic site updates

The WHDP-provider-tool-kit (https://gitlab.com/krisvillez/whdp-provider-tool-kit) includes a script dlz_site.py to automatically generate all sites in the dlz. This script reads an Excel file (whdp_table_site.xlsx) to obtain the list of all sites.

Note on sampling for laboratory data analysis

	If the added site is a location where laboratory samples can be taken, it is likely necessary to modify the laboratory workflow accordingly (E.g. programmable drop-down menus in Excel sheets).

	The laboratory data conversion script is programmed so that adding a site does not require modification of this script.

Add or modify variables

The file variable.yaml is stored in the data folder and contains all variables recognized within the WHDP. This file is modified to add new variables. The information to be included are:

	Name: Shorthand name of the variable (e.g., sensor_bp)

	Description: Additional description of the variable. In case there is no description required, the field can remain empty.

	Unit: Specifies the measurement unit of the variable

Within variable.yaml, each variable is described by 4 text lines with the following structure (note the dash in the first line):

-
 name: sensor_bp
 unit: mbar
 description: pressure

To modify variable.yaml with the nano editor, type the following in the command line:

$ nano dlz/data/variables.yaml

Semi-automatic variable updates

The WHDP-provider-tool-kit (https://gitlab.com/krisvillez/whdp-provider-tool-kit) includes a script dlz_variable.py to automatically generate all variables in the dlz. This script reads an Excel file (whdp_table_variable.xlsx) to obtain the list of all variables.

Note on name convention

In conventional WHDP practice, each variable name is composed of the following parts separated by an underscore (_):

	An actuator/sensor/lab specification (e.g., ‘actuator’ for valve state; ‘sensor’ for pressure measurement; ‘lab’ for laboratory measurement)

	A variable description, according to the EN_81346 norm (see https://de.wikipedia.org/wiki/EN_81346), e.g. sensor_bp for pressure measurement

	[optional] An additional variable descriptor when the EN_81346 norm is too vague, e.g.: sensor_bq_doconc for dissolved oxygen concentration

Note on laboratory data

	If the added variable is a new laboratory measurement, it is likely necessary to modify the laboratory workflow accordingly (E.g. programmable drop-down menus in Excel sheets).

	Adding a variable requires modification of the laboratory data conversion script .

Add or modify persons (offline laboratory data)

The file persons.yaml is stored in the /dlz/lab_data folder and contains all current and previous staff members recognized within the WHDP. The information to be included are:

	Abbrev: Unique shorthand identifier of the person (e.g., villezkr)

	Name: Full name of the staff member (e.g., Kris Villez)

	Department: Affiliation of the staff member (e.g., eawag-eng)

Within persons.yaml, each variable is described by 4 text lines with the following structure (note the dash in the first line):

-
 abbrev: villezkr
 name: Kris Villez
 department: eawag-eng

To modify persons.yaml with the nano editor, type the following in the command line:

$ nano dlz/lab_data/persons.yaml

Semi-automatic person updates

The WHDP-provider-tool-kit (https://gitlab.com/krisvillez/whdp-provider-tool-kit) includes a script dlz_person.py to automatically generate all persons in the dlz. This script reads the sheet person in an Excel file (last known: LabSamples2019.xlsx) to obtain the list of all persons.

Conversion of raw data (offline laboratory data)

Standardized file format

The data arriving in the landing zone are called raw data. The
raw data must be converted into a so called standardized file by
a conversion script. The format of the standardized files is defined
below. In the WHDP current practice, a single Python script is used to
collect all laboratory data and process it into a single file ‘lab_results.csv’.
This file is overwritten every day. The WHDP takes this file in and also overwrites
existing entries when results are changed.
In normal operation, data entries in the WHDP can be overwritten but cannot removed.

Standardized file format for lab_results.csv

The standardized file format for the input data is a csv file with
4 columns. It must adhere the following standards:

	File format: csv file with semicolon as delimiter (;)

	Columns: The first row contains the column names. The columns
are always:

	lab_identifier

	sample_identifier: must be unique

	variable: must exist in variables.yaml and have the exact same name (see above)

	filter_lab

	dilution_lab [can be empty]

	method_lab

	value_lab: must contain only numerical values. Missing values (NULL, NA, or similar) are not allowed.

	description_lab [can be empty]

	person_abbrev_lab

	timestamp_start_lab [can be empty]: format yyyy-mm-dd hh:mm:ss

	timestamp_end_lab: format yyyy-mm-dd hh:mm:ss

	site: must be defined as such and have the exact same name (see above).

	person_abbrev_sample: must be defined in persons.yaml and have the exact same value for abbrev (see above).

	filter_sample

	dilution_sample [can be empty]

	timestamp_sample: format yyyy-mm-dd hh:mm:ss

	description_sample [can be empty]

	method_sample [can be empty]

Example:

	lab_identifier

	sample_identifier

	variable

	filter_lab

	dilution_lab

	method_lab

	value_lab

	description_lab

	person_abbrev_lab

	timestamp_start_lab

	timestamp_end_lab

	site

	person_abbrev_sample

	filter_sample

	dilution_sample

	timestamp_sample

	description_sample

	manual

	NE19063_000_labTOC

	NE19063

	lab_bq_toc

	None

	
	Shimadzu_TOC-L

	1.39

	D

	villezkr

	2019-02-06 23:59:59

	
	NE_WaterHub_GW_GW_Batch-Test

	hessange

	GF/_PET-45/25

	1.0

	2019-02-06_17:15:00

	D

	manual

	NE19054_000_labNO3N

	NE19054

	lab_bq_no3n

	None

	
	IC_Anionen

	14.9

	
	villezkr

	2019-02-07 23:59:59

	
	NE_WaterHub_GW_GW_M2

	braunfab

	None

	1.0

	2019-02-07_10:00:00

	
	manual

	NE19055_000_labNO3N

	NE19055

	lab_bq_no3n

	None

	
	IC_Anionen

	10.1

	
	villezkr

	2019-02-07 23:59:59

	
	NE_WaterHub_GW_GW_M3

	braunfab

	None

	1.0

	2019-02-07_10:00:00

	
	manual

	NE19054_000_labPO4P

	NE19054

	lab_bq_po4p

	None

	
	IC_Anionen

	1.5

	
	villezkr

	2019-02-07 23:59:59

	
	NE_WaterHub_GW_GW_M2

	braunfab

	None

	1.0

	2019-02-07_10:00:00

	
	manual

Conversion script

Unlike the case for online sensor data, the conversion script is not executed automatically by the WHDP software. Instead the data provider must execute this conversion script manually or set up a time-based execution schedule (with cron).

Note on automated data transfer and processing

	To automate this process, the following scripts are currently in use

	/home/whdp-provider/laboratory/t_lab_central.py (copy *.xlsx files from Q drive)

	/home/whdp-provider/laboratory/t_lab_project.py (copy *.xlsx files from Q drive)

	/home/whdp-provider/laboratory/c_lab.py (convert *.xlsx files to *.csv format)

	The above scripts are executed once per day by means of cron, a time-based job scheduler

Add a new source_type (online sensor data)

In order to add a new signal source_type, the information about this source_type have to be provided as a source_type.yaml file in a new folder for the source_type within the dlz/data folder of the landingzone. The information to be specified are:cd ..

	Name: unique shorthand name, e.g. obtained by combining the product name and manufacturer (e.g. concube_scan)

	Description: Detailed description

Adding a source_type if fairly trivial by starting an interactive input program. Typing a dot (.) at any time will abort the entry:

$ whdp add dlz source_type

Note on programmable logic controllers (PLCs)

In conventional WHDP practice, each programmable logic controller (PLC) is considered a source_type of its own for the following reasons:

	The conversion scripts for devices (source) of the same type (source_type) are expected to be similar. Because every PLC is programmed very differently, one cannot expect the conversion scripts to be very similar, at least not to the same degree that one expects for stand-alone sensors.

	The use of a source_type to describe a single PLC device allows to provide a conversion script specific to the PLC which can be used to assign the data automatically to their sources (actuators/sensors) associated with the given PLC.

Add a source (online sensor data, instance of source_type)

In order to add a new signal source, the information about this source have to be provided as a source.yaml file in a new folder for the source_type within the dlz/data folder of the landingzone. The information to be specified are:

	Name: unique shorthand name for the source (e.g., concube_grey1, prgB615)

	Description: detailed description

	Serial: [optional] serial number

	Manufacturer: [optional] the manufacturer of the device

Adding a source_type if fairly trivial by starting an interactive input program. Typing a dot (.) at any time will abort the entry:

$ whdp add dlz source

Semi-automatic source updates

To avoid errors, the WHDP-provider-tool-kit (https://gitlab.com/krisvillez/whdp-provider-tool-kit) includes scripts to automatically generate all sources of a certain source_type in the dlz. This script reads the data from an Excel file which lists the available source_types. Currently, the following scripts and associated Excel sheets are available:

	script

	file

	dlz_sources_memographgrey.py

	memographgrey_config.xlsx

	dlz_sources_plcgrey.py

	plcgrey_config.xlsx

Note on programmable logic controllers (PLCs)

	In conventional WHDP practice, each actuator and sensor associated with the same programmable logic controller (PLC) is considered a separate source. A single source can be associated with multiple variables however. E.g., continuous-scale sensors (e.g., pH) typically have a status variable (manual on/manual off/auto on/auto off) and an actual measured value.

	In conventional WHDP practice, the name for a source representing a PLC-connected actuator or sensor is equal to name of the PLC program that registers the state (and value) of the actuator (sensor). E.g.: prgB615

Add raw data to existing source (online sensor data)

Raw data files are written to the respective data/ folders in the
operational landing zone as follows:

	A new file, for example data.incomplete, is created and data are written to this
file.

	Once the file content is complete and the corresponding file handle is
closed, the file is renamed to data-TIMESTAMP.raw.

Note, the file must end with ``.raw``!
The actual format of TIMESTAMP is not fixed but must be unique string,
that starts with a dash -, and can be temporarily ordered. Encoding a full date and time string
will help the users and developers to inspect and find files, especially
if present in the backup zone.

This procedure is called write-rename pattern and avoids conversion of
incomplete data files. The risk for such a rare condition depends on the
size of the incoming data files and other factors and is probably very
low. But running a data pool over a longer time span increases this risk
and could result in missing data in the data base.

Note on automated data transfers

	To automate this process, the following scripts are currently in use

	t_plcgrey.py (data transfer from plcgrey PLC)

	The above script are executed once per day by means of cron, a time-based job scheduler

	The conversion script for data transfered from plcgrey PLC in use is located here:

	/home/whdp-provider/dlz/data/plcgreyconversion.py

Conversion of raw data (online sensor data)

The files arriving in the landing zone are called raw data. Every
raw data file must be converted into a so called standardized file by
a conversion script. The format of the standardized files is defined
below. Most typically, every source needs an individually adapted
conversion script. As an alternative, the WHDP also allows an individually adapted
conversion script for a source_type

Standardized file format for association with a source

The standardized file format for the input data is a csv file with
4 columns. It must adhere the following standards:

	File format: csv file with semicolon as delimiter (;)

	Timestamp format: yyyy-mm-dd hh:mm:ss

	Column names: The first row contains the column names. The columns
are always: timestamp, variable, value, and site.
The variable must exist in variables.yaml and have the exact same name (see above).
The site must be defined as such and have the exact same name (see above).

	value column: Must contain only numerical values. Missing values
(NULL, NA, or similar) are not allowed.

Example:

	timestamp

	variable

	value

	site

	2019-01-29 12:29:29

	sensor_bp

	18.605044

	NE_WaterHub_GW_GW_M1

	2019-01-29 12:29:30

	sensor_bp

	19.225162

	NE_WaterHub_GW_GW_M1

	2019-01-29 12:29:31

	sensor_bp

	19.535282

	NE_WaterHub_GW_GW_M1

	…

	…

	…

	…

Standardized file format for association with a source_type

The standardized file format for the input data is a csv file with
either 5 columns. It must adhere the following standards:

	File format: csv file with semicolon as delimiter (;)

	Timestamp format: yyyy-mm-dd hh:mm:ss

	Column names: The first row contains the column names. The columns
are always: timestamp, variable, value, site, and source.
The variable must exist in variables.yaml and have the exact same name (see above).
The site must be defined as such and have the exact same name (see above).
The source must be defined as an instance of the considered source_type and have the exact same name (see above).

	value column: Must contain only numerical values. Missing values
(NULL, NA, or similar) are not allowed.

Example:

	timestamp

	variable

	value

	site

	source

	2019-01-29 12:29:29

	sensor_bp

	18.605044

	NE_WaterHub_GW_GW_M1

	prgB615

	2019-01-29 12:29:30

	sensor_bp

	19.225162

	NE_WaterHub_GW_GW_M1

	prgB615

	2019-01-29 12:29:31

	sensor_bp

	19.535282

	NE_WaterHub_GW_GW_M1

	prgB615

	…

	…

	…

	…

	…

Conversion script

The conversion script must define a function which reads raw data and write an output
file (a standardized file). The first argument if this function is the
path to the input raw data, the second argument the path to the resulting file.

The following points should be considered when writing an conversion script:

	Indicate corrupt input data by throwing an exception
within a conversion script. An informative error message is helpful and will be logged.

	If a conversion script writes to stdout (i.e. normal print()
commands) this may not appear in the WHDP log file and thus
might be overseen.

	All required third party modules, packages, or libraries must be
installed globally. Do not try to install them within a script.

The following code snippets show how a conversion script
could look like for different languages.

R

	The file must be named conversion.r.

	The function must be named convert.

Example R conversion script
September 27, 2016 -- Alex Hunziker

library(reshape2)

convert <- function(raw_file, output_file){

 data.raw <- utils::read.table(raw_file, sep="\t", skip=1, header=F)
 names(data.raw) <- c("Date Time", "Water Level", "Average Flow Velocity", "Flow",
 "Temperature", "Surface Flow Velocity", "Distance",
 "Distance Reading Count", "Surcharge Level", "Peak to Mean Ratio",
 "Number of Samples", "Battery Voltage")

 if(ncol(data.raw) !=12)
 stop(paste("Error: Input File has", ncol(data.raw),
 "columns, instead of the expected 12 columns."))

 if(!all(sapply(data.raw[2:ncol(data.raw)], is.numeric)==TRUE))
 stop("Error: Non-numeric input where numeric values were expected.")

 # define coordinate
 xcoor <- 682558
 ycoor <- 239404
 zcoor <- ""

 ## reformat data

 time <- strptime(data.raw$"Date Time", "%d.%m.%Y %H:%M")
 data.raw$"Date Time" <- format(time, "%Y-%m-%d %H:%M:%S")

 data.form <- reshape2::melt(data.raw, id.vars = c("Date Time"))

 colnames(data.form) <- c("timestamp", "parameter", "value")
 data.form$X <- xcoor
 data.form$Y <- ycoor
 data.form$Z <- zcoor

 # remove NA values
 data.form <- stats::na.omit(data.form)

 utils::write.table(data.form, file=output_file, row.names=FALSE, col.names=TRUE,
 quote=FALSE, sep=";")

}

Julia

	The function must be named convert.

	The name of the julia file and the declared module must be the same (up to
the .jl file extension). So the file containing the module
conversion_lake_zurich must be saved as conversion_lake_zurich.jl.

	Further the module and file name must be unique within the landing zone.

Example Julia conversion script
September 27, 2016 -- Alex Hunziker

module conversion_FloDar_Fehraltorf_2

---> 1.) load required package (optional)

using DataFrames

function convert(raw_file, output_file)

 # ---> 2.) read file

 if(!isfile(raw_file))
 error("Error: raw_file does not exist.")
 end

 # the header line contains non-utf8 encoded characters, so we skip this:
 dataraw = DataFrame(readtable(raw_file, separator = '\t', skipstart=1, header=false))

 names!(dataraw, map(symbol, ["Date Time", "Water Level", "Average Flow Velocity", "Flow",
 "Temperature", "Surface Flow Velocity", "Distance",
 "Distance Reading Count", "Surcharge Level",
 "Peak to Mean Ratio", "Number of Samples", "Battery Voltage"]))

 ## ---> 3.) test properties

 if(size(dataraw, 2) != 12)
 error("Imput File has wrong number of columns.")
 end

 ## ---> 4.) add additional information (optional)

 #Define coordinate
 xcoor = 682558
 ycoor = 239404
 zcoor = ""

 ## ---> 5.) reformate data

 selCol = symbol("Date Time")
 time = Dates.DateTime(dataraw[selCol], "dd.mm.yyyy HH:MM")
 dataraw[selCol] = Dates.format(time, "yyyy-mm-dd HH:MM")

 dataForm = stack(dataraw, [2:12], selCol)
 dataForm = dataForm[:, [selCol, :variable, :value]]
 dataForm[4] = xcoor
 dataForm[5] = ycoor
 dataForm[6] = zcoor
 names!(dataForm, [:timestamp, :parameter, :value, :x, :y, :z])

 deleterows!(dataForm, find(isna(dataForm[:, symbol("value")])))

 ## ---> 6.) write file

 writetable(output_file, dataForm, separator = ';')

end

end

Python

Example Python conversion script
September 27, 2016 -- Alex Hunziker

---> 1.) load required packages (optional)
import os.path
import pandas

def convert(raw_file, output_file):

 # ---> 2.) read file

 if not os.path.isfile(raw_file):
 raise ValueError('Error: Input File does not exist.')

 raw_data = pandas.read_csv(raw_file, sep='\t', encoding="latin-1")
 colNames = ("Date Time", "Water Level", "Average Flow Velocity", "Flow", "Temperature",
 "Surface Flow Velocity", "Distance", "Distance Reading Count",
 "Surcharge Level", "Peak to Mean Ratio", "Number of Samples",
 "Battery Voltage")
 raw_data.columns = colNames

 # ---> 3.) test properties

 if len(raw_data.columns) != 12:
 raise ValueError('Error: Input File has wrong number of columns.')

 # ---> 4.) add additional information (optional)

 # Define coordinate
 xcoor = 682558
 ycoor = 239404
 zcoor = ""

 # ---> 5.) reformat data

 time = pandas.to_datetime(raw_data['Date Time'], format="%d.%m.%Y %H:%M")
 raw_data['Date Time'] = time.apply(lambda x: x.strftime('%Y-%m-%d %H:%M'))

 data = pandas.melt(raw_data, id_vars=['Date Time'],
 value_vars=list(raw_data.columns[1:12]))

 data.columns = ['Date Time', 'parameter', 'value']

 data = data.dropna()

 data['x'] = xcoor
 data['y'] = ycoor
 data['z'] = zcoor

 ## ---> 6.) write file

 data.to_csv(output_file, sep=";", index=False)

Matlab

	The function must be named convert.

	The file name must be named convert.m.

%
% SWW-DWH: Example MatLab conversion script
%
% 19/12/2016 - Frank Blumensaat
% Example: conversion('raw_data\data-001.raw','out.dat');
% ---

function conversion(fNameIn,fNameOut)

% read full content of the file into 'data'
fid = fopen(fullfile(fNameIn), 'r');
dataRaw = textscan(fid, '%s %f %f %f %f %f %f %f %f %f %f %f', Inf, 'Delimiter','\t','TreatAsEmpty',...
 {'NA'},'HeaderLines',1);
fclose(fid);

% possible to include check if 12 columns and numeric val's in col2 - col12

fid = fopen(fullfile(fNameIn), 'r');
names = textscan(fid, '%s %s %s %s %s %s %s %s %s %s %s %s', 1,'Delimiter','\t','HeaderLines',0);
fclose(fid);

% % parse string of TRANSFER time (time stamp) into ML number
datTime = datenum(dataRaw{1,1}(:),'DD.mm.YYYY hh:MM');

% define coordinates
xcoor = ones(length(dataRaw{1}),1).*682558;
ycoor = ones(length(dataRaw{1}),1).*239404;
zcoor = zeros(length(dataRaw{1}),1);

% split data matrix acc. to parameter and remove NaNs
for j = 2:size(dataRaw,2)
 dataSplit(j-1).var = excise([datTime dataRaw{1,j} xcoor ycoor zcoor]);
end

% some parameter names are not conforming to parameters.yaml:
parametersRaw = {'Level', 'Velocity', 'Surface Velocity', 'PMR', 'NOS', 'Power Supply'};
parametersUniform = {'Water Level', 'Average Flow Velocity', 'Surface Flow Velocity',...
 'Peak to Mean Ratio', 'Number of Samples', 'Battery Voltage'};

fixNames = containers.Map(parametersRaw,parametersUniform);

% write processed data to a cell array
celldata = {};
clear celldataTemp
for k = 1:length(dataSplit)
 for i = 1:length(dataSplit(k).var)
 celldataTemp{i,1} = datestr(dataSplit(k).var(i,1),'yyyy-mm-dd HH:MM:SS'); % following the ISO 8601 data standard
 name = char(names{k+1});
 % our parameters.yaml does not have the units in (..), so we remove them:
 name = regexprep(name, '\(.*\)', '');
 % correct some names:
 if isKey(fixNames, name)
 name = fixNames(name);
 end
 celldataTemp{i,2} = name;
 celldataTemp{i,3} = dataSplit(k).var(i,2);
 celldataTemp{i,4} = dataSplit(k).var(i,3);
 celldataTemp{i,5} = dataSplit(k).var(i,4);
 celldataTemp{i,6} = '';
 end
 celldata = vertcat(celldata,celldataTemp);
 clear celldataTemp
end

%% write selected data to TXT file
fid = fopen(fullfile(fNameOut),'w');
fprintf(fid, '%s; %s; %s; %s; %s; %s \n', 'timestamp', 'parameter', 'value', 'x', 'y', 'z');
[nrows] = size(celldata);
for row = 1:nrows
 fprintf(fid,'%s; %s; %f; %d; %d; %d \n',celldata{row,:});
end
fclose(fid);
end

%% function to remove NaN values
function X = excise(X)
X(any(isnan(X)'),:) = [];
end

Instructions for Admin

Installation on Ubuntu 18.04. LTS

Run the following instructions as root (this means, type sudo in front of every command) in order to have the root rights.
If a file needs to be opened/modified, use the editor “nano” (type nano in front of the filename).

	Ubuntu packages

$ apt install git r-base postgresql python3-pip python3-psycopg2

	Install julia 1.0.1 and create a symbolic link: (Ubuntu offers julia 0.4.x only):

$ wget https://julialang-s3.julialang.org/bin/linux/x64/1.0/julia-1.0.1-linux-x86_64.tar.gz
$ tar xzf julia-1.0.1-linux-x86_64.tar.gz
$ mv julia-1.0.1 /opt
$ ln -s /opt/julia-1.0.1/bin/julia /usr/local/bin/
$ julia --version

	Create data base users and database

We create a user whdp who owns the whdp database and thus has all permissions to modify
tables and data in this database. In addition to that we create a whdp_reader user which only
has read access.

$ sudo -u postgres createuser -P whdp
$ sudo -u postgres createuser -P whdp_reader

Note down the choosen passwords for both users.

Then create the database and restrict the permissions of whdp_reader.

$ sudo -u postgres createdb -O whdp whdp
$ sudo -u postgres psql -c "REVOKE ALL PRIVILEGES ON ALL TABLES IN SCHEMA public FROM whdp_reader;"
$ sudo -u postgres psql -c "GRANT SELECT ON ALL TABLES IN SCHEMA public TO whdp_reader;"

Now check:

$ psql -U whdp -h 127.0.0.1 whdp
$ ^D (control-D to exit postgress shell)

Next, the database must be configured to allow for remote
access.

In the file /etc/postgresql/10/main/pg_hba.conf edit the line
host all all 127.0.0.1/32 md5
to
host all all 0.0.0.0/0 md5
.

In the file /etc/postgresql/10/main/postgresql.conf change
listen_addresses = 'localhost' to listen_addresses = '*'.

Restart the data base:

$ service postgresql restart

	Install WHDP

$ cd /opt
$ git clone https://sissource.ethz.ch/sispub/whdp.git
$ apt install python3-pip
$ pip3 install -e whdp

Check installation:

$ whdp --help

Install needed packages for demo scripts:

$ /opt/whdp/scripts/setup_julia_et_al.sh

	Create user account for data provider:

$ addgroup whdp
$ useradd -m -G whdp,systemd-journal -s /bin/bash whdp-provider

Assign password:

$ passwd whdp-provider

	Initialize WHDP configuration and setup landing zone:

We assume that the landing zone will be located on a shared drive mounted at /nfsmount,
but you are free to choose any other folder.

Create the landing zone and link it to the WHDP:

$ mkdir -p /nfsmount/landing_zone
$ whdp init-config /nfsmount/landing_zone

Set the correct permissions:

$ chgrp -R whdp /nfsmount/landing_zone
$ chmod -R g+w /nfsmount/landing_zone

	Adapt configuration:

$ /etc/whdp/whdp.ini

Add the database user and password. Replace DB_USER and
DB_PASSWORD with the one selected in step 3.

...
[db]
connection_string = postgresql://DB_USER:DB_PASSWORD@127.0.0.1:5432/whdp

If necessary adapt also the path to the landing zone, define a
backup landingzone, or change software versions.

Then check:

$ whdp check-config

	Create the central management tool service for controlling the init system:

$ ln -s /opt/whdp/scripts/whdp.service /etc/systemd/system
$ systemctl daemon-reload

	Start service:

$ systemctl start whdp.service
$ systemctl status whdp.service

	Observe running service:

can be stopped with ^C), can be used without -f:

$ journalctl -u whdp -f

Keep this terminal window open if you want observe the whdp activities.

	Install julia packages:

Login as user whdp-provider first.

Install needed Julia packages (these are installed per user) to be
able to run the test scripts:

$ /opt/whdp/scripts/setup_julia.sh

Database layout

A formal description of the data base layout used by the WHDP.

Legend:

	pk = Primary Key

	fk = Foreign Key

	uq = Unique within table

	A field in bold letters indicates a field which cannot be NULL

Design principles

The design of the database follows the https://en.wikipedia.org/wiki/Star_schema to model
multidimensional data with a https://en.wikipedia.org/wiki/Data_warehouse.

You find a graphical description of the star schema here.

We follow these principles to assure a consistent layout of the underlying tables:

	primary keys of a table are called tablename_id instead of id

	table names are in singular

	the star schema avoids too much normalization

	a table should not contain too abstract information

signal

This is the central table holding the measurements generated by online sensors. Each row represents a value of a measured variable at a given time and location (site).

Note: In the original UWO datapool, it is so that the coordinates of the signal may not correlate to entries in the site table. In the WHDP this is not a concern. For this reason, it is sufficient to link the online sensor measurement to an instance of site without additional coordinates.

	field

	datatype

	description

	signal_id

	integer (pk)

	

	value

	float

	the actual measured value of the variable

	timestamp

	date_time

	time when the value was measured.

	source_id

	integer (fk)

	source

	site_id

	integer (fk)

	site

	variable_id

	integer (fk)

	variable

lab_results

This is the central table holding the measurements generated by offline laboratory measurements. Each row represents a value of a measured variable corresponding to a given sampling time (timestamp_sample) and location (site).

	field

	datatype

	description

	lab_result_id

	integer (pk)

	automatically generated during upload

	lab_identifier

	string (uq)

	string identifying the measurement

	sample_identifier

	string

	string identifying the sample

	variable_id

	integer (fk)

	unique id of variable description

	filter_lab

	string

	applied filter during analysis

	dilution_lab

	float

	applied dilution during analysis (>= 1)

	method_lab

	string

	analytic method

	value_lab

	float

	obtained measurement

	description_lab

	string

	comment about the analysis

	person_id_lab

	integer (fk)

	unique id of person executing the analysis

	timestamp_start_lab

	date_time

	time of first analysis of this sample

	timestamp_end_lab

	date_time

	time of last analysis of this sample

	site_id

	integer (fk)

	unique id of site where sample was taken

	person_id_sample

	integer (fk)

	unique id of person taking the sample

	filter_sample

	string

	applied filter during sampling

	dilution_sample

	string

	applied dilution during sampling (>=1)

	timestamp_sample

	date_time

	time of sampling

	description_sample

	string

	comment about the sample

site

A site is a specific location where measurements are made or samples are taken. At a given site, several measuring devices (source) can be found. The location of the site is described by a 4-level hierarchy including unit (=room, e.g. NE_A17), area (e.g., GW), setup (e.g., GW), and component (e.g., MBR-Tank1). Together, these four elements are combined to provide a unique name (e.g., NE_WaterHub_GW_GW_MBR-Tank1) for the site.

	field

	datatype

	description

	site_id

	integer (pk)

	

	name

	string (uq)

	name of that site

	description

	string

	

	unit

	string

	room

	area

	string

	room section

	setup

	string

	experimental system (same controller)

	component

	string

	subsystem of the experimental system

	status

	string

	status of the subsystem

picture

Every site may contain a number of pictures. Filenames for each site
must be unique. The file type (e.g. png, jpg, tiff) is determined by the filename
extension of the filename field.

	field

	datatype

	description

	picture_id

	integer (pk)

	

	site_id

	integer (fk)

	referring to the site

	filename

	string

	

	description

	string

	additional information about the picture

	data

	bytea

	contains the (binary) content of the file

	timestamp

	date_time

	creation date of the picture

source

Description of an online data-generating device. A (data-) source is a specific measuring equipment, i.e. an instance of the source_type class. Every measurement (signal) is produced by a source. The name of a source must be unique.

Note: For devices that change location frequently, it may be best to not list the site_id in this table and only specify site_id in the signal table.

	field

	datatype

	description

	source_id

	integer (pk)

	

	source_type_id

	integer (fk)

	source category

	name

	string (uq)

	short name for device, e.g. plc_grey_v1.0, concube_grey1)

	description

	string

	description of device (e.g., S::CAN con::cube)

	serial

	string

	serial number (unique, if available)

	manufacturer

	string

	company which produced that equipment

source_type

Categorization of a given source.

	field

	datatype

	description

	source_type_id

	integer (pk)

	

	name

	string (uq)

	short name for device type (e.g., plc_grey)

	description

	string

	device type description (e.g., WAGO programmable logic controller)

special_value_definition

Certain source types produce categorical data, such as «dry», «wet»,
«n/a» and so on. This table is used to correlate categorical data and numeric
values for a given source type. For example the numerical value 1 might encode
the state «dry».

	field

	datatype

	description

	special_value_definition_id

	integer (pk)

	

	source_type_id

	integer (fk)

	source_type

	description

	string

	

	categorical_value

	string

	the categorical value

	numerical_value

	float

	the numeric value it is mapped to

variables

Every value in the signal table is connected to a specific variable
which describes and defines its unit.

	field

	datatype

	description

	variable_id

	integer (pk)

	

	name

	string (uq)

	short name for variable
(e.g. lab_cod, actuator_bf, sensor_bq_cond)

	description

	string

	explanation of measurement; include reference to SOP(s) where available

	unit

	string

	unit of measurement (e.g. “m3 h-1”);
use no unit when the variable is not a continuous scale (e.g., pump on/off);
use 1 for dimensionless variables (e.g., pH)

comment

There are two types of signal annotations: comments and quality.
A comment is an arbitrary text, where as quality annotations have a
controlled vocabulary. A signal may contain more than one comment.

Note: Note that current implementation uses an associative table to link each comment (comment_id) to a signal (signal_id). This allows many-to-one associations (multiple comments for same signal by different people) as well as one-to-many associations (one comment for multiple measurements).

	field

	datatype

	description

	comment_id

	integer (pk)

	

	signal_id

	integer (fk)

	(via association table)

	text

	string

	the comment itself

	timestamp

	date_time

	the time the comment was added

	person_id

	integer (fk)

	identified of the author who added the annotation

signal_quality

An online sensor measurement may contain more than one quality flag
(but not the same quality flag twice). The combination of signal_id,
quality_id, and person_id must be unique.

Note: Note that current implementation uses an associative table to link each label (signal_quality_id) to a signal (signal_id). This allows many-to-one associations (multiple labels for same signal by different people) as well as one-to-many associations (one label for multiple measurements).

	field

	datatype

	description

	signal_quality_id

	integer (pk)

	

	quality_definition_id

	integer (fk)

	

	signal_id

	integer (fk)

	(via association table)

	timestamp

	date_time

	date when annotation was added

quality

Measurements contain errors. This table holds the controlled vocabulary
mentioned above. As some quality flags may be assigned automatically,
the method field indicates the origin of such a quality entry.

	field

	datatype

	description

	quality_id

	integer (pk)

	

	flag

	string (uq)

	a textual description of quality_id

	method

	string

	a description how the quality flag is generated.

	person_id

	integer (fk)

	author who added the annotation

persons

Information about the staff involved in sampling,
laboratory analysis, data quality checks, and commenting.

	field

	datatype

	description

	person_id

	integer (pk)

	

	abbrev

	string (uq)

	unique identifier for the staff member (alias)

	name

	string

	name of staff member

	department

	string

	department acronym

project

Information about projects.

Note: This is considered legacy code obtained from
the original UWO datapool software. Since the entries in this
table are not linked anywhere, filling this table has
lowest priority.

	field

	datatype

	description

	project_id

	integer (pk)

	

	abbrev

	string (uq)

	unique identifier for the project

	title

	string

	project title

	description

	string

	project goals

Command references

Usage: whdp init-config [OPTIONS] LANDING_ZONE_FOLDER

 initializes /etc/whdp/ folder with config files.

 landing_zone_folder must be a non-existing folder on the current machine.

Options:
 --verbose dumps lots of output from interaction with db
 --use-sqlitedb use sqlite db
 --force use this twice to overwrite existing config files
 --help Show this message and exit.

Usage: whdp check-config [OPTIONS]

 checks if config file(s) in /etc/whdp are valid.

Options:
 --verbose dumps lots of output from interaction with db
 --help Show this message and exit.

Usage: whdp init-db [OPTIONS]

 creates empty tables in operational database. Run check_config first to
 see if the configured data base settings are valid.

Options:
 --verbose dumps lots of output from interaction with db
 --force use this twice to overwrite existing db
 --help Show this message and exit.

Usage: whdp check [OPTIONS] DEVELOPMENT_LANDING_ZONE_FOLDER

 checks scripts and produced results in given landing zone. does not write
 to database.

Options:
 --result-folder TEXT provide target for results
 --verbose might dump lots of output
 --help Show this message and exit.

Usage: whdp start-develop [OPTIONS] DEVELOPMENT_LANDING_ZONE_FOLDER

 setup local landing zone for adding new site / instrument / conversion
 script. this command will clone the operational landing zone (might be
 empty).

Options:
 --verbose dumps lots of output from interaction with db
 --force use this twice to overwrite existing db
 --help Show this message and exit.

Usage: whdp update-operational [OPTIONS] DEVELOPMENT_LANDING_ZONE_FOLDER

 deploys local changes to operational landing zone.

Options:
 --verbose might dump lots of output
 --force use this twice to overwrite existing landing zone in case
 of errors when checking
 --copy-raw-files copy raw files also to operational landing zone
 --help Show this message and exit.

How to contribute to documentation

Initialization

To checkout the full repository, you need to configure git first.

$ git clone https://sissource.ethz.ch/sispub/whdp.git
$ cd whdp
$ git branch --track docs origin/docs
$ git checkout docs

Then install the packages needed to build the documentation:

$ cd docs
$ pip install -r requirements.txt

Typical workflow

Update your local repository

To fetch the recent changes from other contributors first update your
local repository:

$ git pull origin docs

Edit or add files

If you now edit the files in the sources folder or add a new file
you might want to include this into the table of contents. To do so you
have to add the new file(s) without their file extension to
index.rst in the section starting with .. toctree::.

After editing the files in docs/sources you can inspect the result
of your changes: First cd to the docs folder and run:

$ make clean
$ make html
$ open build/html/index.html

Your browser should now show the current version of the documentation
web site.

Publish your changes

To submit your changes first run git status to get an overview of
changed and new files.

Then execute

$ git add PLACE_A_FILENAME_HERE

for all the files you added or changed. Then run

$ git commit -a -m "PLACE A MESSAGE HERE DESCRIBING YOUR CHANGES"
$ git push origin docs

After a few seconds you should see the changes published on
https://whdp.readthedocs.io.

Obsolete documentation

This material should be worked in to the other sections.

Run server in test mode

The following sequence initializes whdp and runs the server in single
process mode.

$ rm -rf ./lz 2>/dev/null

$ export ETC=./etc
$ rm -rf $ETC 2>/dev/null

$ pool init-config --use-sqlitedb ./lz
$ pool init-db
$ pool check-config
$ pool run-simple-server

Usually pool init-config would write to /etc/whdp and thus the
command requires root privileges. Setting the environment variable ETC
allows overriding the /etc folder so we do not interfere with a global
setup.

Further we use --use-sqlitedb so configuration and setup of a data base
system as Postgres is not required. This flag is introduced for testing, in
operational mode we recommond to avoid this flag and configer Postgres
instead.

The last run-simple-server command will observe changes to the operational
landing zone at ./lz and report its operations. The command does not run in
the background and thus will block the terminal until the user presses CTRL-C
to enforce shutdown.

As a data provider we open another terminal window, setup a development landing
zone and commit the defaults to the operational landing zone. You should then
see some output from the run-simple-server command in the previous terminal
window:

$ rm -rf ./dlz 2>/dev/null
$ export ETC=./etc

$ pool start-develop dlz
$ pool check dlz
$ pool update-operational dlz

Workflow example

To initialize whdp configuration on the current server run the init-config subcommand,
this might require admin permissions because the config file is stored in the /etc/whdp
folder:

$ pool init-config ./lz

> init-config
- guess settings
 - 'matlab' not found on $PATH
- created config files at /etc/whdp
 please edit these files and adapt the data base configuration to your setup
+ initialized landing zone at ./lz

Then edit this file and run pool check-config:

$ pool check-config

> check-config
- check settings in config file /etc/whdp/whdp.ini
- try to connect to db
- could not connect to db postgresql://user:password@localhost:5432/whdp
- check R configuration + code execution
- matlab not configured, skip tests
- check julia configuration + code execution
- check julia version.
- check python configuration + code execution
+ all checks passed

To start development create a so called development landing zone* which can be an
arbitrary folder:

$ pool start-develop ./dlz

> start-develop
- setup development landing zone
- operational landing zone is empty. create development landing zone with example files.
+ setup done

This copied some example .yaml files, conversion scripts and raw data files. To check
the scripts run:

$ pool check-scripts ./dlz

> check-scripts
- check landing zone at ./dlz
- check ./dlz/data/sensor_from_company_xyz/sensor_instance_julia/conversion.jl
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_julia_0.csv
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_julia_0.txt
- check ./dlz/data/sensor_from_company_xyz/sensor_instance_python/conversion.py
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_python_0.csv
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_python_0.txt
- check ./dlz/data/sensor_from_company_xyz/sensor_instance_r/conversion.r
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_r_0.csv
- wrote conversion result to /tmp/tmp9hcxslxv/sensor_instance_r_0.txt
+ congratulations: checks succeeded.

This checked the scripts and you can inspect the results files as displayed in the output.

To check the .yaml files:

$ pool check-yamls ./dlz/

> check-yamls
- check yamls in landing zone at ./dlz/
- setup fresh development db. productive does not exist or is empty.
- load and check 1 new yaml files:
- ./dlz/data/parameters.yaml
+ all yaml files checked

Now you can upload the changes from the development landing zone to the operational
landing zone:

$ pool update-operational ./dlz

> update-operational
- check before copying files around.
- copied data/parameters.yaml
- copied data/sensor_from_company_xyz/sensor_instance_julia/conversion.jl
- copied data/sensor_from_company_xyz/sensor_instance_julia/raw_data/data-001.raw
- copied data/sensor_from_company_xyz/sensor_instance_matlab/raw_data/data-001.raw
- copied data/sensor_from_company_xyz/sensor_instance_python/conversion.py
- copied data/sensor_from_company_xyz/sensor_instance_python/raw_data/data-001.raw
- copied data/sensor_from_company_xyz/sensor_instance_r/conversion.r
- copied data/sensor_from_company_xyz/sensor_instance_r/raw_data/data-001.raw
- copied data/sensor_from_company_xyz/source_type.yaml
- copied sites/example_site/images/24G35_regenwetter.jpg
- copied sites/example_site/images/IMG_0312.JPG
- copied sites/example_site/images/IMG_0732.JPG
- copied sites/example_site/site.yaml
+ copied 13 files to ./lz

Index

 # Example Julia conversion script
September 27, 2016 -- Alex Hunziker

module conversion_FloDar_Fehraltorf_2

---> 1.) load required package (optional)

using DataFrames

function convert(raw_file, output_file)

 # ---> 2.) read file

 if(!isfile(raw_file))
 error("Error: raw_file does not exist.")
 end

 # the header line contains non-utf8 encoded characters, so we skip this:
 dataraw = DataFrame(readtable(raw_file, separator = '\t', skipstart=1, header=false))

 names!(dataraw, map(symbol, ["Date Time", "Water Level", "Average Flow Velocity", "Flow",
 "Temperature", "Surface Flow Velocity", "Distance",
 "Distance Reading Count", "Surcharge Level",
 "Peak to Mean Ratio", "Number of Samples", "Battery Voltage"]))

 ## ---> 3.) test properties

 if(size(dataraw, 2) != 12)
 error("Imput File has wrong number of columns.")
 end

 ## ---> 4.) add additional information (optional)

 #Define coordinate
 xcoor = 682558
 ycoor = 239404
 zcoor = ""

 ## ---> 5.) reformate data

 selCol = symbol("Date Time")
 time = Dates.DateTime(dataraw[selCol], "dd.mm.yyyy HH:MM")
 dataraw[selCol] = Dates.format(time, "yyyy-mm-dd HH:MM")

 dataForm = stack(dataraw, [2:12], selCol)
 dataForm = dataForm[:, [selCol, :variable, :value]]
 dataForm[4] = xcoor
 dataForm[5] = ycoor
 dataForm[6] = zcoor
 names!(dataForm, [:timestamp, :parameter, :value, :x, :y, :z])

 deleterows!(dataForm, find(isna(dataForm[:, symbol("value")])))

 ## ---> 6.) write file

 writetable(output_file, dataForm, separator = ';')

end

end

 %
% SWW-DWH: Example MatLab conversion script
%
% 19/12/2016 - Frank Blumensaat
% Example: conversion('raw_data\data-001.raw','out.dat');
% ---

function conversion(fNameIn,fNameOut)

% read full content of the file into 'data'
fid = fopen(fullfile(fNameIn), 'r');
dataRaw = textscan(fid, '%s %f %f %f %f %f %f %f %f %f %f %f', Inf, 'Delimiter','\t','TreatAsEmpty',...
 {'NA'},'HeaderLines',1);
fclose(fid);

% possible to include check if 12 columns and numeric val's in col2 - col12

fid = fopen(fullfile(fNameIn), 'r');
names = textscan(fid, '%s %s %s %s %s %s %s %s %s %s %s %s', 1,'Delimiter','\t','HeaderLines',0);
fclose(fid);

% % parse string of TRANSFER time (time stamp) into ML number
datTime = datenum(dataRaw{1,1}(:),'DD.mm.YYYY hh:MM');

% define coordinates
xcoor = ones(length(dataRaw{1}),1).*682558;
ycoor = ones(length(dataRaw{1}),1).*239404;
zcoor = zeros(length(dataRaw{1}),1);

% split data matrix acc. to parameter and remove NaNs
for j = 2:size(dataRaw,2)
 dataSplit(j-1).var = excise([datTime dataRaw{1,j} xcoor ycoor zcoor]);
end

% some parameter names are not conforming to parameters.yaml:
parametersRaw = {'Level', 'Velocity', 'Surface Velocity', 'PMR', 'NOS', 'Power Supply'};
parametersUniform = {'Water Level', 'Average Flow Velocity', 'Surface Flow Velocity',...
 'Peak to Mean Ratio', 'Number of Samples', 'Battery Voltage'};

fixNames = containers.Map(parametersRaw,parametersUniform);

% write processed data to a cell array
celldata = {};
clear celldataTemp
for k = 1:length(dataSplit)
 for i = 1:length(dataSplit(k).var)
 celldataTemp{i,1} = datestr(dataSplit(k).var(i,1),'yyyy-mm-dd HH:MM:SS'); % following the ISO 8601 data standard
 name = char(names{k+1});
 % our parameters.yaml does not have the units in (..), so we remove them:
 name = regexprep(name, '\(.*\)', '');
 % correct some names:
 if isKey(fixNames, name)
 name = fixNames(name);
 end
 celldataTemp{i,2} = name;
 celldataTemp{i,3} = dataSplit(k).var(i,2);
 celldataTemp{i,4} = dataSplit(k).var(i,3);
 celldataTemp{i,5} = dataSplit(k).var(i,4);
 celldataTemp{i,6} = '';
 end
 celldata = vertcat(celldata,celldataTemp);
 clear celldataTemp
end

%% write selected data to TXT file
fid = fopen(fullfile(fNameOut),'w');
fprintf(fid, '%s; %s; %s; %s; %s; %s \n', 'timestamp', 'parameter', 'value', 'x', 'y', 'z');
[nrows] = size(celldata);
for row = 1:nrows
 fprintf(fid,'%s; %s; %f; %d; %d; %d \n',celldata{row,:});
end
fclose(fid);
end

%% function to remove NaN values
function X = excise(X)
X(any(isnan(X)'),:) = [];
end

 # Example Python conversion script
September 27, 2016 -- Alex Hunziker

---> 1.) load required packages (optional)
import os.path
import pandas

def convert(raw_file, output_file):

 # ---> 2.) read file

 if not os.path.isfile(raw_file):
 raise ValueError('Error: Input File does not exist.')

 raw_data = pandas.read_csv(raw_file, sep='\t', encoding="latin-1")
 colNames = ("Date Time", "Water Level", "Average Flow Velocity", "Flow", "Temperature",
 "Surface Flow Velocity", "Distance", "Distance Reading Count",
 "Surcharge Level", "Peak to Mean Ratio", "Number of Samples",
 "Battery Voltage")
 raw_data.columns = colNames

 # ---> 3.) test properties

 if len(raw_data.columns) != 12:
 raise ValueError('Error: Input File has wrong number of columns.')

 # ---> 4.) add additional information (optional)

 # Define coordinate
 xcoor = 682558
 ycoor = 239404
 zcoor = ""

 # ---> 5.) reformat data

 time = pandas.to_datetime(raw_data['Date Time'], format="%d.%m.%Y %H:%M")
 raw_data['Date Time'] = time.apply(lambda x: x.strftime('%Y-%m-%d %H:%M'))

 data = pandas.melt(raw_data, id_vars=['Date Time'],
 value_vars=list(raw_data.columns[1:12]))

 data.columns = ['Date Time', 'parameter', 'value']

 data = data.dropna()

 data['x'] = xcoor
 data['y'] = ycoor
 data['z'] = zcoor

 ## ---> 6.) write file

 data.to_csv(output_file, sep=";", index=False)

 # Example R conversion script
September 27, 2016 -- Alex Hunziker

library(reshape2)

convert <- function(raw_file, output_file){

 data.raw <- utils::read.table(raw_file, sep="\t", skip=1, header=F)
 names(data.raw) <- c("Date Time", "Water Level", "Average Flow Velocity", "Flow",
 "Temperature", "Surface Flow Velocity", "Distance",
 "Distance Reading Count", "Surcharge Level", "Peak to Mean Ratio",
 "Number of Samples", "Battery Voltage")

 if(ncol(data.raw) !=12)
 stop(paste("Error: Input File has", ncol(data.raw),
 "columns, instead of the expected 12 columns."))

 if(!all(sapply(data.raw[2:ncol(data.raw)], is.numeric)==TRUE))
 stop("Error: Non-numeric input where numeric values were expected.")

 # define coordinate
 xcoor <- 682558
 ycoor <- 239404
 zcoor <- ""

 ## reformat data

 time <- strptime(data.raw$"Date Time", "%d.%m.%Y %H:%M")
 data.raw$"Date Time" <- format(time, "%Y-%m-%d %H:%M:%S")

 data.form <- reshape2::melt(data.raw, id.vars = c("Date Time"))

 colnames(data.form) <- c("timestamp", "parameter", "value")
 data.form$X <- xcoor
 data.form$Y <- ycoor
 data.form$Z <- zcoor

 # remove NA values
 data.form <- stats::na.omit(data.form)

 utils::write.table(data.form, file=output_file, row.names=FALSE, col.names=TRUE,
 quote=FALSE, sep=";")

}

 name: NE_WaterHub_GW_GW_MBR-Tank1
description: MBR Tank 1 - Buffer tank
unit: NE_A17
area: GW
setup: GW
component: MBR-Tank1
status: operational

pictures are optional:
pictures:
 -
 path: images/installation.png
 description: Installation of Lora Ultrasonic Sensor 00769
 # date is optional:
 date: 2016/08/22 12:00:00
 -
 path: images/impact.jpg
 description: Impact Zone of Sensor 00769

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the WHDP documentation!

 		
 Instructions for data users

 		
 Connect to the WHDP

 		
 Connect with terminal

 		
 Connect within R

 		
 Connect within Python

 		
 Example SQL queries

 		
 Instructions for data provider

 		
 System architecture

 		
 General workflow

 		
 Add site

 		
 Semi-automatic site updates

 		
 Note on sampling for laboratory data analysis

 		
 Add or modify variables

 		
 Semi-automatic variable updates

 		
 Note on name convention

 		
 Note on laboratory data

 		
 Add or modify persons (offline laboratory data)

 		
 Semi-automatic person updates

 		
 Conversion of raw data (offline laboratory data)

 		
 Standardized file format

 		
 Standardized file format for lab_results.csv

 		
 Conversion script

 		
 Note on automated data transfer and processing

 		
 Add a new source_type (online sensor data)

 		
 Note on programmable logic controllers (PLCs)

 		
 Add a source (online sensor data, instance of source_type)

 		
 Semi-automatic source updates

 		
 Note on programmable logic controllers (PLCs)

 		
 Add raw data to existing source (online sensor data)

 		
 Note on automated data transfers

 		
 Conversion of raw data (online sensor data)

 		
 Standardized file format for association with a source

 		
 Standardized file format for association with a source_type

 		
 Conversion script

 		
 R

 		
 Julia

 		
 Python

 		
 Matlab

 		
 Instructions for Admin

 		
 Installation on Ubuntu 18.04. LTS

 		
 Database layout

 		
 Design principles

 		
 signal

 		
 lab_results

 		
 site

 		
 picture

 		
 source

 		
 source_type

 		
 special_value_definition

 		
 variables

 		
 comment

 		
 signal_quality

 		
 quality

 		
 persons

 		
 project

 		
 Command references

 		
 How to contribute to documentation

 		
 Initialization

 		
 Typical workflow

 		
 Update your local repository

 		
 Edit or add files

 		
 Publish your changes

 		
 Obsolete documentation

 		
 Run server in test mode

 		
 Workflow example

_static/up.png

_static/up-pressed.png

